Adsorbed formate: the key intermediate in the oxidation of formic acid on platinum electrodes.

نویسندگان

  • Angel Cuesta
  • Gema Cabello
  • Claudio Gutiérrez
  • Masatoshi Osawa
چکیده

The electrooxidation of formic acid on Pt and other noble metal electrodes proceeds through a dual-path mechanism, composed of a direct path and an indirect path through adsorbed carbon monoxide, a poisoning intermediate. Adsorbed formate had been identified as the reactive intermediate in the direct path. Here we show that actually it is also the intermediate in the indirect path and is, hence, the key reaction intermediate, common to both the direct and indirect paths. Furthermore, it is confirmed that the dehydration of formic acid on Pt electrodes requires adjacent empty sites, and it is demonstrated that the reaction follows an apparently paradoxical electrochemical mechanism, in which an oxidation is immediately followed by a reduction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidation Mechanism of Formic Acid on the Bi-adatom Modified Pt(111) Surface

In order to improve catalytic processes, elucidation of reaction mechanisms is essential. Here, supported by a combination of experimental and computational results, the oxidation mechanism of formic acid on Pt(111) electrodes modified by the incorporation of bismuth adatoms is revealed. In the proposed model, formic acid is first physisorbed, on bismuth, and then deprotonated and chemisorbed i...

متن کامل

Methanol Oxidation at Diamond-Supported Pt Nanoparticles: Effect of the Diamond Surface Termination

The electrocatalytic reactivity of Pt nanoparticles supported on high-pressure-high-temperature diamond particles towards adsorbed CO, methanol and formic acid oxidation is investigated employing differential electrochemical mass spectrometry (DEMS). Surface treatment of diamond particles, employed as dimensionally stable electrocatalyst supports, leads to materials with surfaces featuring main...

متن کامل

Effects of the anion adsorption and pH on the formic acid oxidation reaction on Pt(111) electrodes

The effects of solution pH and anion adsorption for the formic acid oxidation reaction on the Pt(111) electrode have been examined using electrochemical techniques. Regarding the pH effects, it has been found that oxidation currents for this reaction increases as the pH increases, which indicates that solution formate is involved in the reaction mechanism. Unexpectedly, the adsorption of sulfat...

متن کامل

Formic acid oxidation on platinum: a simple mechanistic study.

The oxidation of small organic acids on noble metal surfaces under electrocatalytic conditions is important for the operation of fuel cells and is of scientific interest, but the basic reaction mechanisms continue to be a matter of debate. Formic acid oxidation on platinum is one of the simplest of these reactions, yet even this model system remains poorly understood. Historically, proposed mec...

متن کامل

Highly active and durable platinum-lead bimetallic alloy nanoflowers for formic acid electrooxidation.

The Pt84Pb16 (atomic ratio) bimetallic alloy nanoflowers (Pt84Pb16 BANFs) are synthesized by a simple one-pot hydrothermal reduction method that effectively enhance the dehydrogenation pathway of the formic acid oxidation reaction (FAOR) due to the ensemble effect and the electronic effect. As a result, the mass activity of Pt84Pb16 BANFs for the FAOR is 16.7 times higher than that of commercia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 45  شماره 

صفحات  -

تاریخ انتشار 2011